

Acknowledgement of Positive Carrier Screening Results: Donor 5819

I, the undersigned recipient, understand that this donor has tested **POSITIVE** as a carrier for the following condition(s):

• SLC26A4-related conditions

I intend to use sperm samples from this donor for insemination or other assisted conception procedure(s).

I acknowledge that The Sperm Bank of California (TSBC) has made the donor's genetic testing results available to me and my medical providers, and that I have reviewed these results. I understand that TSBC **strongly recommends** that I review these genetic testing results with a Genetic Counselor and my medical providers. I understand that TSBC can refer me to genetic counseling services if desired.

I understand that recipient testing is strongly recommended when a donor has positive carrier screening results and that such testing can reduce but not eliminate risks.

I acknowledge that I personally assume all risks associated with use of semen samples provided by a donor who has tested **POSITIVE as a carrier for SLC26A4-related conditions**

On behalf of myself and my spouse, heirs, representatives, I hereby release and forever hold harmless TSBC and its current and former officers, directors, employees, attorneys, insurers, consultants, agents, and representatives (collectively "Releases") from any liability or responsibility whatsoever for any and all outcomes, and hereby release and forever discharge Releases from any and all actions, causes of action, demands, damages, losses, liabilities, suits, expenses, including attorneys' fees and costs, of whatever character, in law or in equity, whether currently known, suspected, unknown or unsuspected, matured or unmatured, arising out of my use of sperm donated by a donor who has tested **POSITIVE as a carrier for SLC26A4-related conditions**

This release involves the waiver of all rights and benefits that I may have under California Civil Code section 1542, which states: "A general release does not extend to claims that the creditor or releasing party does not know or suspect to exist in his or her favor at the time of executing the release and that, if known by him or her, would have materially affected his or her settlement with the debtor or released party."

Please select one of the following:

- □ I have been tested for the above named condition(s) and/or I plan to be tested prior to using the samples.
- □ I understand that TSBC **strongly recommends** that I discuss these results with a Genetic Counselor and my medical providers and consider testing for the above named condition(s). At this time I have **declined** testing and/or **do not anticipate being tested**.

I understand that if I transfer my vials (or embryos if applicable) to any other person, including my spouse, that TSBC requires that person (1) register with TSBC and (2) complete an **Acknowledgement of Positive Carrier Screening Results**.

I understand that any and all questions as to the legal interpretation, validity or any other aspect of this agreement shall be determined by the laws of the State of California, regardless of the location or residence of any of the parties.

Recipient's signature

Recipient's printed name

Date

GENETIC TESTING: POSITIVE CARRIER STATUS

This donor tested **POSITIVE** as a carrier for one or more autosomal recessive conditions as described on the prior page and in the attached genetic testing results.

What does it mean to be a carrier?

<u>All people carry genetic mutations in their DNA</u>. Genetic testing can help to identify some, but not all, of these mutations. While this donor carries a mutation for one or more recessively inherited condition(s), offspring from this donor are not expected to be at risk of developing these condition(s) unless the recipient (or egg provider if different from the recipient) also carries a genetic mutation for the same condition(s). For this reason, we strongly encourage you to discuss carrier screening for yourself (or your egg provider) with your physician and a genetic counselor. Genetic testing can reduce but not eliminate risks.

What are my next steps?

1. Download the genetic test results and review with your medical providers

We **strongly recommend** that you discuss this donor's genetic test results with your physician **PRIOR TO SCHEDULING A SHIPMENT OR PICK-UP**, to confirm the donor is suitable for your use. Vials retrieved from the building cannot be exchanged or refunded. The donor's genetic test results are available for free download on the donor's page at <u>https://www.thespermbankofca.org/donor-catalog</u>.

2. We recommend scheduling a genetic counseling session.

A genetic counselor can explain the results in detail including the inheritance pattern, potential risks to your children, and the available testing options that you may want to consider for yourself (or your egg provider). Phone or in person consultations are available for a fee with TSBC's Genetic Counselors at San Francisco Genetic Counseling (<u>https://www.sfgenetics.org/</u>) or you can locate a genetic counselor at <u>www.findageneticcounselor.com</u>.

3. Complete and return the Acknowledgement of Positive Carrier Screening Results

TSBC requires that all recipients selecting this donor complete this acknowledgement form **PRIOR TO SCHEDULING A SHIPMENT OR PICK-UP**. Completing this form documents that you have been informed about this donor's genetic test results and that you are aware of TSBC's recommendation to discuss the genetic test results with your medical providers as noted above.

Reproductive Technologies, Inc. THE SPERM BANK OF CALIFORNIA

EXPANDED CARRIER SCREENING RESULTS DONOR 5819

Expanded carrier screening for 268 autosomal recessive conditions was completed by Invitae and reported on 03/19/2022.

The results were **POSITIVE** for **SLC26A4-related conditions**. Donor 5819 is a carrier for these conditions.

It is strongly recommend that recipients who use this donor's sperm undergo carrier screening for these specific conditions.

Testing was negative for the remainder of genes screened.

Disease	Result	Residual risk to be a carrier (based on East Asian & Northern European ancestry)
SLC26A4-related conditions	POSITIVE	n/a
Cystic Fibrosis	Negative	1 in 2,700
Spinal Muscular Atrophy	Negative: 2 copies exon 7 c.*3+80T>G variant not detected	1 in 701
HBB Hemoglobinopathies	Negative	1 in 5,300
Alpha Thalassemia	Negative	1 in 191

Genetic screening tests can significantly reduce, but never completely eliminate, the chance that a person is a carrier for a particular disorder.

Please refer to the donor's Invitae expanded carrier test report for more information on the testing completed and the donor's results.

Please also see the Health Problems List for a summary of the information that this donor has provided to us regarding personal and family medical history.

Sincerely,

Janine Mash LCGC Certified Genetic Counselor San Francisco Genetic Counseling At the request of another recipient, screening for the following recessive conditions was performed by **Sema4** and reported on 04/22/2022.

The results were **NEGATIVE** for the conditions tested.

Conditions requested by recipients	Result	Residual risk to be a carrier
Retinitis Pigmentosa 25 (EYS)	Negative	Reduced
Familial Mediterranean Fever (MEVF)	Negative	Reduced

Genetic tests can significantly reduce, but never completely eliminate, the chance that a person is a carrier for a particular disorder.

Please refer to the donor's Sema4 carrier test report for more information on the testing completed and the donor's results.

Please also see the Health Problems List for a summary of the information that this donor has provided to us regarding personal and family medical history.

Sincerely,

Janine Mash LCGC Certified Genetic Counselor San Francisco Genetic Counseling

Patient name: DOB: Sex assigned at birth: Gender:	5819 DONOR Male	Sample type: Sample collection date: Sample accession date: MRN:	Saliva 10-MAR-2022 11-MAR-2022	Report date: Invitae #: Clinical team:	18-MAR-2022 RQ3343863 Janine Mash Lorraine Bonner, MD
Reason for testing Gamete donor		Te	ist performed vitae Comprehensive Car	rier Screen withou	ut X-linked Disorders

- Primary Panel (CF, SMA)
- Add-on Comprehensive Carrier Screen without X-linked Disorders genes

RESULT: POSITIVE

This carrier test evaluated 268 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation.

This test shows the presence of clinically significant genetic change(s) in this individual in the gene(s) indicated below. No other clinically significant changes were identified in the remaining genes evaluated with this test.

RESULTS	GENE	VARIANT(S)	INHERITANCE	PARTNER TESTING RECOMMENDED
Carrier: SLC26A4-related conditions	SLC26A4	c.259G>T (p.Asp87Tyr)	Autosomal recessive	Yes

Next steps

- See the table above for recommendations regarding testing of this individual's reproductive partner.
- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the table below for residual risks, which presumes a negative family history of the conditions listed.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

Clinical summary

RESULT: CARRIER

SLC26A4-related conditions

A single Pathogenic variant, c.259G>T (p.Asp87Tyr), was identified in SLC26A4.

What are SLC26A4-related conditions?

SLC26A4-related conditions include Pendred syndrome (PDS) and SLC26A4-related deafness. Pendred syndrome is a condition that causes deafness, and specific bone and endocrine abnormalities. SLC26A4-related deafness affects an individual's ability to hear.

PDS is characterized by severe to profound bilateral deafness caused by damage to structures in the inner ear (sensorineural deafness), which is typically present at birth. Affected individuals also have balance difficulties due to inner ear problems (vestibular dysfunction) and abnormalities of the temporal (skull) bones, specifically an enlarged vestibular aqueduct (EVA) with or without underdevelopment of a part of the inner ear (cochlear hypoplasia). Additionally, individuals with PDS develop enlargement of the thyroid gland (goiter) in late childhood to early adulthood. Symptoms of PDS may vary, even among members of the same family. Intelligence and life span are not typically affected. Digenic inheritance, which occurs when an individual has a genetic change in two different Pendred syndrome-associated genes, has been reported (PMID: 19426954); however, the evidence available at this time is insufficient to confirm this as a mode of inheritance.

SLC26A4-related deafness is characterized by nonsyndromic deafness (DFNB4), enlarged vestibular aqueduct, and vestibular dysfunction; however, thyroid defects are not observed.

Follow-up depends on each affected individual's specific situation, and discussion with a healthcare provider should be considered.

Next steps

Carrier testing for the reproductive partner is recommended.

+ If your partner tests positive:

In autosomal recessive inheritance, an individual must have disease-causing genetic changes in each copy of the SLC26A4 gene to be affected. Carriers, who have a disease-causing genetic change in only one copy of the gene, typically do not have symptoms. When both reproductive partners are carriers of an autosomal recessive condition, there is a 25% chance for each child to have the condition.

) If your partner tests negative:

A negative carrier test result reduces, but does not eliminate, the chance that a person may be a carrier. The risk that a person could still be a carrier, even after a negative test result, is called a residual risk. See the table below for your partner's hypothetical

residual risk after testing negative for SLC26A4-related conditions. These values are provided only as a guide, are based on the detection rate for the condition as tested at Invitae, and assume a negative family history, the absence of symptoms, and vary based on the ethnic background of an individual. For genes associated with both dominant and recessive inheritance, the numbers provided apply to the recessive condition(s) associated with the gene.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
SLC26A4-related conditions (AR) NM_000441.1 SLC2	SI C26A4	Asian	1 in 74	1 in 7300
	SECENT	Pan-ethnic	1 in 80	1 in 7900

Results to note

Pseudodeficiency allele

Benign change, c.2065G>A (p.Glu689Lys), known to be a pseudodeficiency allele, identified in the GAA gene. Pseudodeficiency alleles are not known to be associated with disease, including glycogen storage disease type II (Pompe disease).

The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening; however, pseudodeficiency alleles are not known to cause disease, including glycogen storage disease type II (Pompe disease). Carrier testing for the reproductive partner is not indicated based on this result.

Pseudodeficiency allele

Benign change, c.1685T>C (p.Ile562Thr), known to be a pseudodeficiency allele, identified in the GALC gene. Pseudodeficiency alleles are not known to be associated with disease, including Krabbe disease.

The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening; however, pseudodeficiency alleles are not known to cause disease, including Krabbe disease. Carrier testing for the reproductive partner is not indicated based on this result.

Variant details

SLC26A4, Exon 3, c.259G>T (p.Asp87Tyr), heterozygous, PATHOGENIC

- This sequence change replaces aspartic acid, which is acidic and polar, with tyrosine, which is neutral and polar, at codon 87 of the SLC26A4 protein (p.Asp87Tyr).
- This variant is not present in population databases (gnomAD no frequency).
- This missense change has been observed in individuals with deafness (PMID: 19199245, 24612839, 25372295).
- ClinVar contains an entry for this variant (Variation ID: 552777).
- Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt SLC26A4 protein function.
- Experimental studies have shown that this missense change affects SLC26A4 function (PMID: 23185506).
- For these reasons, this variant has been classified as Pathogenic.

Residual risk

This table displays residual risks after a negative result for each of the genes and corresponding disorders. The values provided assume a negative family history and the absence of symptoms for each disorder. For genes associated with both dominant and recessive inheritance, the numbers in this table apply to the recessive condition(s) associated with the gene, unless otherwise noted. Residual risk values are provided for disorders when carrier frequency is greater than 1 in 500. For disorders with carrier frequency equal to, or less than, 1 in 500, residual risk is considered to be reduced substantially. When provided, residual risk values are inferred from published carrier frequencies, and estimated detection rates are based on testing technologies used at Invitae. Residual risks are provided only as a guide for assessing approximate risk given a negative result; values will vary based on the ethnic background of an individual. For individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. For any genes marked with an asterisk*, refer to the Limitations section below for detailed coverage information. In the case of a sample-specific limitation, "N/A" indicates that a residual risk value could not be calculated. AR = autosomal recessive, XL = X-linked, AD = autosomal dominant.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
3-hydroxy-3-methylglutaryl-CoA lyase deficiency (AR)	HMCCL	Pan-ethnic	≤1 in 500	Reduced
NM_000191.2	HMOCL	Portuguese	1 in 160	1 in 15900
ABCB11-related conditions (AR) NM_003742.2	ABCB11	Pan-ethnic	1 in 100	1 in 9900
ABCC8-related conditions (AR)		Ashkenazi Jewish	1 in 52	1 in 5100
NM_000352.4 When the mother is a noncarrier, but the father is a		Finnish	1 in 100	1 in 9900
carrier, there is a residual risk for focal disease (1 in 540 for the Ashkenazi Jewish population; undetermined in other ethnic groups)	ABCC8	Pan-ethnic	1 in 177	1 in 17600
Abetalipoproteinemia (AR)	MTTP	Ashkenazi Jewish	1 in 131	1 in 13000
NM_000253.3		Pan-ethnic	≤1 in 500	Reduced
Achromatopsia (CNGB3-related) (AR) NM_019098.4	CNGB3	Pan-ethnic	1 in 93	1 in 9200
ACOX1-related conditions (AR) NM_004035.6	ACOX1	Pan-ethnic	≤1 in 500	Reduced
Acrodermatitis enteropathica (AR) NM_130849.3	SLC39A4	Pan-ethnic	1 in 354	1 in 35300
Adenosine deaminase deficiency (AR) NM_000022.2	ADA	Pan-ethnic	1 in 224	1 in 2788
Aicardi-Goutieres syndrome 5 (AR) NM_015474.3	SAMHD1	Pan-ethnic	≤1 in 500	Reduced
Aldosterone synthase deficiency (AR)	CYP11B2	Pan-ethnic	≤1 in 500	Reduced
NM_000498.3		Sephardic Jewish (Iranian)	1 in 30	1 in 2900
Alpha-mannosidosis (AR) NM_000528.3	MAN2B1	Pan-ethnic	1 in 354	1 in 35300
	HBA1/	African-American	1 in 30	1 in 291
Alpha-thalassemia (AR)		Asian	1 in 20	1 in 191
NM_000558.4, NM_000517.4	HBA2 *	Caucasian	≤1 in 500	Reduced
		Pan-ethnic	1 in 25	1 in 241
Alport syndrome (COL 443 related) (AP)		Ashkenazi Jewish	1 in 192	1 in 19100
NM_000091.4	COL4A3	Caucasian	1 in 284	1 in 28300
		Pan-ethnic	1 in 354	1 in 35300
Alport syndrome (COL4A4-related) (AR) NM_000092.4	COL4A4	Pan-ethnic	1 in 353	1 in 35200
Alström syndrome (AR) NM_015120.4	ALMS1	Pan-ethnic	≤1 in 500	Reduced
Arginase deficiency (AR) NM_000045.3	ARG1	Pan-ethnic	1 in 274	1 in 27300
Argininosuccinate lyase deficiency (AR) NM_000048.3	ASL	Pan-ethnic	1 in 133	1 in 1321
Aromatase deficiency (AR) NM_031226.2	CYP19A1	Pan-ethnic	≤1 in 500	Reduced
Asparagine synthetase deficiency (AR) NM_133436.3	ASNS	Pan-ethnic	≤1 in 500	Reduced

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
		Sephardic Jewish (Iranian)	1 in 80	1 in 7900
Aspartylglucosaminuria (AR)		Finnish	1 in 69	1 in 6800
NM_000027.3	AGA	Pan-ethnic	≤1 in 500	Reduced
Ataxia with vitamin E deficiency (AR)	ττρα	Italian	1 in 274	1 in 2731
NM_000370.3		Pan-ethnic	≤1 in 500	Reduced
ATM-related conditions (AR)	АТМ	Pan-ethnic	1 in 100	1 in 9900
NM_000051.3		Sephardic Jewish	1 in 69	1 in 6800
Autoimmune polyendocrinopathy with candidiasis and		Finnish	1 in 79	1 in 7800
ectodermal dysplasia (AR)	AIRE	Pan-ethnic	1 in 150	1 in 14900
NM_000383.3		Sardinian	1 in 60	1 in 5900
		Sephardic Jewish (Iranian)	l in 48	I in 4/00
(TGM1-related) (AR)	TGM1	Norwegian	1 in 151	1 in 3000
NM_000359.2		French Canadian (Saguenay Lac St	1 111 224	T IN 4400
Saguenay (AR)	SACS	Jean)	1 in 21	1 in 2000
		Pan-ethnic	≤l in 500	Reduced
NM_024685.3	BBS10	Pan-ethnic	1 in 354	1 in 35300
Bardet-Biedl syndrome (BBS12-related) (AR) NM_152618.2	BBS12	Pan-ethnic	1 in 708	Reduced
BBS1-related conditions (AR)	BBC1	Faroese	1 in 30	1 in 2900
NM_024649.4	DD31	Pan-ethnic	1 in 330	1 in 32900
BBS2-related conditions (AR)	BBS2	Ashkenazi Jewish	1 in 140	1 in 13900
NM_031885.3	DD52	Pan-ethnic	1 in 560	Reduced
PCS11 related conditions (AP)	BCS1L	Caucasian	1 in 407	1 in 40600
NM 004328.4		Finnish	1 in 108	1 in 10700
		Pan-ethnic	≤1 in 500	Reduced
Beta-ketothiolase deficiency (AR)	ACAT1	Caucasian	1 in 354	1 in 35300
		Pan-ethnic	≤1 in 500	Reduced
(PTS-related) (AR)	PTS	Chinese	1 in 122	1 in 12100
NM_000317.2		Pan-ethnic	1 in 433	1 in 43200
Bloom syndrome (AR)	BLM	Ashkenazi Jewish	1 in 100	1 in 9900
		Pan-ethnic	≤l in 500	Reduced
NM_057176.2	BSND	Pan-ethnic	≤1 in 500	Reduced
Canavan disease (AR)	ASPA	Ashkenazi Jewish	1 in 57	1 in 5600
NM_000049.2		Pan-ethnic	1 in 159	1 in 15800
NM_001875.4	CPS1	Pan-ethnic	≤1 in 500	Reduced
Carnitine palmitoyltransferase I deficiency (AR)	CPT1A	Hutterite	1 in 16	1 in 1500
NM_001876.3		Pan-ethnic	≤1 in 500	Reduced
Carnitine palmitoyltransferase II deficiency (AR) NM_000098.2	CPT2	Ashkenazi Jewish Pan-ethnic	1 in 45	1 in 4400
Carpenter syndrome (RAB23-related) (AR) NM_183227.2	RAB23	Pan-ethnic	≤1 in 500	Reduced
Cartilage hair hypoplasia analyzetic dysplasia spectrum		Amish	1 in 10	1 in 900
disorders (AR)	RMRP	Finnish	1 in 76	1 in 7500
NR_003051.3		Pan-ethnic	≤1 in 500	Reduced
CDH23-related conditions (AR) NM_022124.5	CDH23	Pan-ethnic	1 in 202	1 in 4020
CEP290-related conditions (AR) NM_025114.3	CEP290	Pan-ethnic	1 in 185	1 in 18400
Cerebrotendinous xanthomatosis (AR)	CVD2741	Pan-ethnic	1 in 112	1 in 5550
NM_000784.3	CTP2/AT	Sephardic Jewish	1 in 76	1 in 3750
CERKL-related conditions (AR)	CEPVI	Pan-ethnic	1 in 137	1 in 13600
NM_001030311.2	CLINE	Sephardic Jewish	1 in 24	1 in 2300

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
		African-American - classic CF	1 in 61	1 in 6000
		Ashkenazi Jewish - classic CF	1 in 29	1 in 2800
CETP related conditions (AP)		Asian - classic CF	1 in 88	1 in 8700
NM_000492.3	CFTR	Caucasian - classic CF	1 in 28	1 in 2700
		Pan-ethnic - classic CF	1 in 45	1 in 4400
		Pan-ethnic - classic CF and CFTR- related disorders	1 in 9	1 in 800
Charcot-Marie-Tooth disease type 4D (AR)	NDRG1	Pan-ethnic	≤1 in 500	Reduced
NM_006096.3		Roma	1 in 22	1 in 2100
Chorea-acanthocytosis (AR) NM_033305.2	VPS13A *	Pan-ethnic	≤1 in 500	Reduced
Chronic granulomatous disease (CYBA-related) (AR)	СҮВА	Pan-ethnic	≤1 in 500	Reduced
NM_000101.3		Sephardic Jewish (Moroccan)	1 in 13	1 in 1200
		Chinese	1 in 65	1 in 6400
Citrin deficiency (AR)		Japanese	1 in 65	1 in 6400
NM_014251.2	SLC25A13	Korean	1 in 112	1 in 11100
		Pan-etnnic	1 in 313	1 in 31200
		Southern Chinese and Talwanese	I in 48	I in 4700
NM_000050.4	ASS1	Pan-ethnic	1 in 120	1 in 2975
CLN3-related conditions (AR) NM_001042432.1	CLN3	Pan-ethnic	1 in 230	1 in 22900
CLRN1-related conditions (AR)	CLRN1	Ashkenazi Jewish	1 in 120	1 in 11900
NM_174878.2		Pan-ethnic	1 in 533	Reduced
Cobalamin C deficiency (AR) NM_015506.2	MMACHC	Pan-ethnic	1 in 123	1 in 12200
Cobalamin D deficiency (AR) NM_015702.2	MMADHC *	Pan-ethnic	≤1 in 500	Reduced
Cockayne syndrome A (AR) NM_000082.3	ERCC8	Pan-ethnic	1 in 514	Reduced
Cockayne syndrome B (AR) NM_000124.3	ERCC6	Pan-ethnic	1 in 377	1 in 37600
Cohen syndrome (AR)	VPS13B	Amish (Ohio)	1 in 12	1 in 1100
NM_017890.4	VESTOD	Pan-ethnic	≤1 in 500	Reduced
Combined malonic and methylmalonic aciduria (AR) NM_174917.4	ACSF3	Pan-ethnic	1 in 87	1 in 8600
Combined oxidative phosphorylation deficiency 1 (AR) NM_024996.5	GFM1	Pan-ethnic	≤1 in 500	Reduced
Combined oxidative phosphorylation deficiency 3 (AR) NM_001172696.1	TSFM *	Finnish Pan-ethnic	1 in 80	1 in 1129 Reduced
Combined pituitary hormone deficiency (LHX3-related) (AR)	LHX3	Pan-ethnic	≤1 in 500	Reduced
NM_014564.4				
Combined pituitary hormone deficiency (PROP1-related) (AR) NM 006261.4	PROP1	Pan-ethnic	1 in 45	1 in 2200
Congenital adrenal hyperplasia due to 3-beta- hydroxysteroid dehydrogenase deficiency (AR) NM_000198.3	HSD3B2	Pan-ethnic	≤1 in 500	Reduced
Congenital adrenal hyperplasia due to 21-hydroxylase deficiency (AR) NM_000500.7	CYP21A2 *	Pan-ethnic	1 in 61	1 in 751
Congenital disorder of glycosylation (SLC35A3-related)		Ashkenazi Jewish	1 in 469	1 in 46800
(AR) NM_012243.2	SLC35A3	Pan-ethnic	≤1 in 500	Reduced
Congonital disorder of glucosylation type to (AD)		Ashkenazi Jewish	1 in 61	1 in 6000
NM_000303.2	PMM2	Caucasian	1 in 60	1 in 5900
		Pan-ethnic	1 in 190	1 in 18900
Congenital disorder of glycosylation type Ib (AR) NM_002435.2	MPI	Pan-ethnic	≤1 in 500	Reduced

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Congenital disorder of glycosylation type Ic (AR) NM_013339.3	ALG6 *	Pan-ethnic	≤1 in 500	Reduced
Congenital insensitivity to pain with anhidrosis (AR) NM_001012331.1	NTRK1	Pan-ethnic	≤1 in 500	Reduced
Congenital myasthenic syndrome (CHRNE-related)		European Roma	1 in 25	1 in 2400
(AR) NM 000080 3	CHRNE	Pan-ethnic	1 in 200	1 in 19900
		Finnish	1 in 46	1 in 4500
Congenital nephrotic syndrome type 1 (AR)	NPHS1	Old Order Mennonite	1 in 12	1 in 1100
NM_004646.3		Pan-ethnic	≤1 in 500	Reduced
Congenital nephrotic syndrome type 2 (AR) NM_014625.3	NPHS2	Pan-ethnic	≤1 in 500	Reduced
Corneal dystrophy and perceptive deafness (AR) NM_032034.3	SLC4A11	Pan-ethnic	≤1 in 500	Reduced
CRB1-related conditions (AR) NM_201253.2	CRB1	Pan-ethnic	1 in 112	1 in 11100
CYP11B1-related conditions (AR)	CYPIIBI	Pan-ethnic	1 in 194	1 in 19300
NM_000497.3	CIFIIDI	Sephardic Jewish (Moroccan)	1 in 40	1 in 3900
CYP17A1-related conditions (AR) NM_000102.3	CYP17A1	Pan-ethnic	≤1 in 500	Reduced
Cystinosis (AR)		French Canadian (Saguenay-Lac-St- Jean)	1 in 39	1 in 3800
NM_004937.2	CTNS	Pan-ethnic	1 in 158	1 in 15700
		Sephardic Jewish (Moroccan)	1 in 100	1 in 9900
DHDDS-related conditions (AR)		Ashkenazi Jewish	1 in 117	1 in 11600
NM_024887.3	DIIDDS	Pan-ethnic	≤1 in 500	Reduced
Dihydrolipoamide dehydrogenase deficiency (AR)	סוס	Ashkenazi Jewish	1 in 107	1 in 5300
NM_000108.4	515	Pan-ethnic	≤1 in 500	Reduced
Distal renal tubular acidosis with deafness		Pan-ethnic	≤1 in 500	Reduced
NM_001692.3	AIPOVIBI	Sephardic Jewish	1 in 140	1 in 13900
DYSF-related conditions (AR)	DYSF	Pan-ethnic	1 in 311	1 in 31000
		Sephardic Jewish (Libyan)	1 in 10	I in 900
Dyskeratosis congenita spectrum disorders (RTEL1-related) (AR) NM 001283000 1	RTEL1	Ashkenazi Jewish Pan-ethnic	l in 222 ≤1 in 500	Reduced
Dystrophic epidermolysis bullosa (AR)	COL7A1	Pan-ethnic	1 in 370	1 in 12300
Ehlers-Danlos syndrome, dermatosparavis type (AR)		Ashkenazi lewish	1 in 187	1 in 18600
NM_014244.4	ADAMTS2	Pan-ethnic	≤1 in 500	Reduced
Ellis-van Creveld syndrome (EVC-related) (AR)		Amish	1 in 8	1 in 700
NM_153717.2	EVC	Pan-ethnic	1 in 220	1 in 21900
Ethylmalonic encephalopathy (AR) NM_014297.3	ETHE1	Pan-ethnic	≤1 in 500	Reduced
EVC2-related conditions (AR) NM_147127.4	EVC2	Pan-ethnic	1 in 199	1 in 19800
Familial chylomicronemia syndrome (AR)	LPL	French Canadian (Saguenay-Lac-St- Jean)	1 in 46	1 in 4500
NM_000237.2		Pan-ethnic	≤1 in 500	Reduced
Familial dysautonomia (AR)	EL D1	Ashkenazi Jewish	1 in 36	1 in 3500
NM_003640.3	ELFI	Pan-ethnic	≤1 in 500	Reduced
		Afrikaner	1 in 72	1 in 7100
Familial hypercholesterolemia (LDLR-related) (AD)	LDLR	Ashkenazi Jewish	1 in 69	1 in 6800
NM_000527.4		French Canadian	1 in 270	1 in 26900
		Pan-ethnic	1 in 250	1 in 24900
Familial hypercholesterolemia (LDLRAP1-related) (AR)	LDLRAP1	Pan-ethnic	≤1 in 500	Reduced
		Sardinian	l in 143	l in 14200
Fanconi anemia type A (AR)	FANCA	ATrikaner	I IN 83	I IN δ200
		Fan-elfinic	1 111 34 3	1 111 34400

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
		Sephardic Jewish	1 in 133	1 in 13200
		Spanish Roma	1 in 64	1 in 6300
Fanconi anemia type C (AR)	FANCE	Ashkenazi Jewish	1 in 89	1 in 8800
NM_000136.2	FANCE	Pan-ethnic	1 in 417	1 in 41600
Fanconi anemia type G (AR)	FANICO	African-American	1 in 100	1 in 9900
NM_004629.1	FANCG	Pan-ethnic	≤1 in 500	Reduced
FH-related conditions (AR) NM_000143.3	FH	Pan-ethnic	≤1 in 500	Reduced
Galactokinase deficiency galactosemia (AR)	CALKI	Pan-ethnic	1 in 122	1 in 12100
NM_000154.1	GALKI	Roma	1 in 47	1 in 4600
		African-American	1 in 87	1 in 8600
Galactosemia (GALT-related) (AR)	CALT	Ashkenazi Jewish	1 in 156	1 in 15500
NM_000155.3	GALI	Irish Traveller	1 in 11	1 in 1000
		Pan-ethnic	1 in 100	1 in 9900
GBA-related conditions including Gaucher disease (AR)		Ashkenazi Jewish	1 in 15	1 in 234
NM_001005741.2	ODA "	Pan-ethnic	1 in 158	1 in 561
GBE1-related conditions (AR)	CREI	Ashkenazi Jewish	1 in 68	1 in 6700
NM_000158.3	GBET	Pan-ethnic	1 in 387	1 in 38600
Gitelman syndrome (AR) NM_000339.2	SLC12A3	Pan-ethnic	1 in 100	1 in 9900
		Ashkenazi Jewish	1 in 13	1 in 1200
GJB2-related conditions (AR) NM_004004.5	GJB2	Pan-ethnic	1 in 50	1 in 4900
		Thai	1 in 9	1 in 800
GLB1-related conditions (AR) NM_000404.2		Pan-ethnic	1 in 158	1 in 15700
	GLB1	Roma	1 in 50	1 in 4900
		South Brazilian	1 in 58	1 in 5700
GLE1-related conditions (AR) NM_001003722.1	GLE1	Finnish	1 in 100	1 in 9900
		Pan-ethnic	≤1 in 500	Reduced
		Amish	1 in 9	1 in 800
Glutaric acidemia type I (AR)	GCDH	Oji-Cree First Nations	1 in 9	1 in 800
		Pan-ethnic	1 in 87	1 in 8600
Glutaric acidemia type IIA (AR) NM_000126.3	ETFA	Pan-ethnic	≤1 in 500	Reduced
Glutaric acidemia type IIC (AR)	ETEDH	Asian	1 in 87	1 in 8600
NM_004453.3	EIFDH	Pan-ethnic	1 in 250	1 in 24900
Glycine encephalopathy (AMT-related) (AR)	ANAT	Finnish	1 in 142	1 in 14100
NM_000481.3	AMI	Pan-ethnic	1 in 325	1 in 32400
Glycine encephalopathy (GLDC-related) (AR)	CLDC	Caucasian	1 in 141	1 in 14000
NM_000170.2	GLDC	Pan-ethnic	1 in 165	1 in 16400
Glycogen storage disease type Ia (AR)	CARC	Ashkenazi Jewish	1 in 71	1 in 1400
NM_000151.3	GOPC	Pan-ethnic	1 in 177	1 in 3520
		African-American	1 in 60	1 in 5900
Glycogen storage disease type II (Pompe disease) (AR)	C 4 4	Ashkenazi Jewish	1 in 58	1 in 5700
NM_000152.3	UAA	Asian	1 in 112	1 in 11100
		Pan-ethnic	1 in 100	1 in 9900
		Faroese	1 in 28	1 in 540
NM 000642.2	AGL	Pan-ethnic	1 in 159	1 in 3160
		Sephardic Jewish (Moroccan)	1 in 34	1 in 660
Chucagan storage disease ture V (AB)		Caucasian	1 in 158	1 in 15700
NM 005609.3	PYGM	Pan-ethnic	1 in 171	1 in 17000
		Sephardic Jewish (Kurdish)	1 in 84	1 in 8300
Glycogen storage disease type VII (AR)	DEKM	Ashkenazi Jewish	1 in 250	1 in 24900
NM_000289.5	F F NIVI	Pan-ethnic	≤1 in 500	Reduced
GNE-related conditions (AR)	CNE	Pan-ethnic	1 in 179	1 in 17800
NM_001128227.2	UNE	Sephardic Jewish (Iranian)	1 in 10	1 in 900

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
GNPTAB-related conditions (AR)	GNPTAB	Irish Traveller	1 in 15	1 in 1400
NM_024312.4	GINITAD	Pan-ethnic	1 in 200	1 in 19900
Guanidinoacetate methyltransferase deficiency (AR)	GAMT	Pan-ethnic	≤1 in 500	Reduced
NM_000156.5		Portuguese	1 in 125	1 in 12400
Cyrate atrophy of the choroid and retina (AR)		Finnish	1 in 126	1 in 12500
NM_000274.3	OAT *	Pan-ethnic	≤1 in 500	Reduced
		Sephardic Jewish	1 in 177	1 in 17600
HADHA-related conditions (AR)	-	Caucasian	1 in 250	1 in 24900
NM_000182.4	HADHA	Finnish	1 in 125	1 in 12400
		Pan-ethnic	1 in 350	1 in 34900
		African-American	1 in 8	1 in 700
		Asian	1 in 54	1 in 5300
HBB-related hemoglobinopathies (AR)	НВВ	Caucasian	1 in 373	1 in 37200
NM_000518.4		Hispanic	1 in 17	1 in 1600
		Mediterranean	I in 28	1 in 2/00
		Pan-ethnic	1 in 49	1 in 4800
Hereditary fructose intolerance (AR)		African-American	l in 226	1 in 22500
NM_000035.3	ALDOB	Middle Eastern	I in 9/	I in 9600
		Pan-ethnic	1 in 122	1 in 12100
Hereditary hemochromatosis type 2 (HJV-related) (AR) NM_213653.3	HJV	Pan-ethnic	≤1 in 500	Reduced
Hereditary hemochromatosis type 3 (AR) NM_003227.3	TFR2	Pan-ethnic	≤1 in 500	Reduced
Hermansky-Pudlak syndrome type 1 (AR)	HPS1	Pan-ethnic	≤1 in 500	Reduced
NM_000195.4		Puerto Rican (Northwestern)	1 in 21	1 in 2000
Harmansley Budlak syndroma type 2 (AB)	HPS3	Ashkenazi Jewish	1 in 235	1 in 23400
NM_032383.4		Pan-ethnic	≤1 in 500	Reduced
		Puerto Rican (Central)	1 in 63	1 in 6200
HGSNAT-related conditions (AR) NM_152419.2	HGSNAT	Pan-ethnic	≤1 in 500	Reduced
Holocarboxylase synthetase deficiency (AR)		Faroese	1 in 20	1 in 1900
NM_000411.6	HLCS	Japanese	1 in 158	1 in 15700
		Pan-ethnic	1 in 224	1 in 22300
Homocystinuria due to cobalamin E deficiency (AR) NM_002454.2	MTRR	Pan-ethnic	≤1 in 500	Reduced
Homocystinuria due to cystathionine beta-synthase	_	Norwegian	1 in 40	1 in 3900
deficiency (AR)	CBS	Pan-ethnic	1 in 224	1 in 22300
NM_000071.2		Qatari	1 in 21	1 in 2000
Homocystinuria due to MTHFR deficiency (AR)	MTHFR *	Pan-ethnic	≤1 in 500	Reduced
HSD17B4-related conditions (AR)		Sephardic Jewish (Bukharian)	1 in 39	1 in 3800
NM_000414.3	H3D17B4	Finite	1 11 138	1 in 2000
Hydrolethalus syndrome type T (AR)	HYLS1	Pan ethnic	1 in 40	Poducod
Hungromithingmia hungrommonomia homocitrullinuria		Motic (Sackatchowan)	≤1 III 300	1 in 1800
syndrome (AR) NM_014252.3	SLC25A15	Pan-ethnic	≤1 in 500	Reduced
Hypophosphatasia (AR)		Mennonite	1 in 25	1 in 480
NM_000478.5	ALPL	Pan-ethnic	1 in 150	1 in 2980
Isovaleric acidemia (AR) NM_002225.3	IVD	Pan-ethnic	1 in 250	1 in 24900
Joubert syndrome and related disorders (MKS1-related)	MKSI	Finnish	1 in 47	1 in 920
(AR) NM_017777.3	IVIN 3 I	Pan-ethnic	1 in 260	1 in 5180
Joudert syndrome and related disorders (RPGRIP1L- related) (AR) NM_015272.2	RPGRIP1L *	Pan-ethnic	1 in 259	1 in 5160

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
Joubert syndrome and related disorders		Ashkenazi Jewish	1 in 92	1 in 9100
(TMEM216-related) (AR) NM_001173990.2	TMEM216	Pan-ethnic	≤1 in 500	Reduced
Junctional epidermolysis bullosa (LAMC2-related) (AR) NM_005562.2	LAMC2	Pan-ethnic	≤1 in 500	Reduced
KCNJ11-related conditions (AR) NM_000525.3	KCNJ11	Pan-ethnic	≤1 in 500	Reduced
Krabbe disease (AR)	GALC *	Druze	1 in 6	1 in 500
NM_000153.3		Pan-ethnic	1 in 158	1 in 15700
LAMA2-related muscular dystrophy (AR) NM_000426.3	LAMA2	Pan-ethnic	1 in 87	1 in 8600
LAMA3-related conditions (AR) NM_000227.4	LAMA3	Pan-ethnic	≤1 in 500	Reduced
LAMB3-related conditions (AR) NM_000228.2	LAMB3	Pan-ethnic	1 in 317	1 in 31600
Leber congenital amaurosis 5 (AR) NM_181714.3	LCA5	Pan-ethnic	1 in 645	Reduced
Leukoencephalopathy with vanishing white matter (EIF2B5-related) (AR) NM_003907.2	EIF2B5	Pan-ethnic	≤1 in 500	Reduced
Limb-girdle muscular dystrophy (CAPN3-related) (AR) NM_000070.2	CAPN3	Pan-ethnic	1 in 134	1 in 13300
		Caucasian	1 in 571	Reduced
Limb-girdle muscular dystrophy type 2C (AR) NM_000231.2		Japanese	1 in 374	1 in 37300
	SGCG	Moroccan	1 in 250	1 in 24900
		Pan-ethnic	≤1 in 500	Reduced
		Roma	1 in 59	1 in 5800
	SGCA	Caucasian	1 in 286	1 in 28500
NM_000023.2		Finnish	1 in 150	1 in 14900
		Pan-ethnic	≤1 in 500	Reduced
Limb-girdle muscular dystrophy type 2E (AR)	SGCB	Caucasian	1 in 404	1 in 5038
NM_000232.4		Pan-ethnic	≤1 in 500	Reduced
Lipoid congenital adrenal hyperplasia (AR)	STAR	Korean	1 in 170	1 in 16900
NM_000349.2		Pan-ethnic	≤l in 500	Reduced
Lysinuric protein intolerance (AR)	CI C747	Finnish	1 in 120	1 in 2380
ŃM_001126106.2	SLC/A/	Japanese	1 in 120	I IN 2380
		Pan-ethnic	≤1 in 500	Reduced
Lysosomal acid lipase deficiency (AR)		Dan ethnic	1 in 250	1 in 5967
NM_000235.3	LIFA	Senhardic Jewish (Iranian)	1 in 33	1 in 534
Major histocompatibility complex class II deficiency (CIITA-related) (AR) NM_000246.3	CIITA	Pan-ethnic	≤1 in 500	Reduced
Maple syrup urine disease type 1A (AR)		Mennonite	1 in 10	1 in 900
NM_000709.3	BCKDHA	Pan-ethnic	1 in 373	1 in 37200
Maple syrup urine disease type 1B (AR)		Ashkenazi Jewish	1 in 97	1 in 9600
NM_183050.2	ВСКДНВ	Pan-ethnic	1 in 346	1 in 34500
Maple syrup urine disease type 2 (AR) NM_001918.3	DBT	Pan-ethnic	≤1 in 500	Reduced
Medium-chain acyl-CoA dehydrogenase deficiency (AR) NM_000016.5	ACADM	Northern European Pan-ethnic	1 in 40 1 in 66	1 in 3900 1 in 6500
Megalencephalic leukoencephalopathy with subcortical		Pan-ethnic	≤1 in 500	Reduced
cysts 1 (AR) NM_015166.3	MLC1	Sephardic Jewish (Libyan)	1 in 40	1 in 3900
		Navajo	1 in 40	1 in 780
Netachromatic leukodystrophy (ARSA-related) (AR)	ARSA	Pan-ethnic	1 in 100	1 in 1980
		Sephardic Jewish	1 in 46	1 in 900
Methylmalonic acidemia (MMAA-related) (AR) NM_172250.2	ММАА	Pan-ethnic	1 in 316	1 in 10500

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT	
Methylmalonic acidemia (MMAB-related) (AR) NM_052845.3	ММАВ	Pan-ethnic	1 in 456	1 in 22750	
Methylmalonic acidemia (MUT-related) (AR) NM_000255.3	MUT	Pan-ethnic	1 in 204	1 in 5075	
MFSD8-related conditions (AR) NM_152778.2	MFSD8	Pan-ethnic	≤1 in 500	Reduced	
Microcephaly, postnatal progressive, with seizures and	MED17	Pan-ethnic	≤1 in 500	Reduced	
NM_004268.4	WED17	Sephardic Jewish	1 in 20	1 in 1900	
Mitashandrial sampley Labiaianay () (AD)		Ashkenazi Jewish	1 in 290	1 in 28900	
NM_004553.4	NDUFS6	Caucasus Jewish	1 in 24	1 in 2300	
		Pan-ethnic	≤1 in 500	Reduced	
Mitochondrial complex I deficiency 16 (AR) NM_024120.4	NDUFAF5	Ashkenazi Jewish Pan-ethnic	l in 290 ≤1 in 500	Reduced	
Mitochondrial complex I deficiency 20/ACAD9 deficiency (AR) NM_014049.4	ACAD9	Pan-ethnic	≤1 in 500	Reduced	
Mitochondrial complex IV deficiency / Leigh syndrome, French Canadian type (AR)	LRPPRC	French Canadian (Saguenay-Lac-St- Jean)	1 in 23	1 in 2200	
NM_133259.3		Pan-ethnic	≤1 in 500	Reduced	
Mitochondrial neurogastrointestinal encephalomyopathy (AR)	TYMP	Pan-ethnic Sephardic lewish	≤1 in 500 1 in 158	Reduced	
NM_001953.4		Ashkenazi Jewish	1 in 57	1 in 5600	
NM_005373.2	MPL	Pan-ethnic	≤1 in 500	Reduced	
MPV17-related conditions (AR)		Navajo	1 in 20	1 in 475	
NM_002437.4	MPV17	Pan-ethnic	≤1 in 500	Reduced	
Mucolipidosis type III gamma (AR) NM_032520.4	GNPTG	Pan-ethnic	≤1 in 500	Reduced	
Mucolipidosis type IV (AR)	MCOLN1	Ashkenazi Jewish	1 in 100	1 in 9900 Reduced	
Mucopolysaccharidosis type L (AR)		Fan-etime	5111 300	Reduced	
NM_000203.4	IDUA	Pan-ethnic	1 in 148	1 in 4900	
Mucopolysaccharidosis type IIIA (AR)		Northern European	1 in 173	1 in 17200	
NM_000199.3	SC2H	Pan-ethnic	l in 215	I in 21400	
Mucopolysaccharidosis type IIIB (AR)			5111300	Reduced	
NM_000263.3	NAGLU	Pan-ethnic	1 in 224	1 in 22300	
NM_002076.3	GNS	Pan-ethnic	≤1 in 500	Reduced	
Mucopolysaccharidosis type IX (AR) NM_153281.1	HYAL1	Pan-ethnic	≤1 in 500	Reduced	
Mucopolysaccharidosis type VI (AR) NM_000046.3	ARSB	Pan-ethnic	1 in 250	1 in 24900	
Multiple sulfatase deficiency (AR) NM_182760.3	SUMF1	Pan-ethnic	≤1 in 500	Reduced	
Muscular dystrophy-dystroglycanopathy (FKRP-related)	EKDD	Norwegian	1 in 116	1 in 11500	
(AR) NM_024301.4	FKRP	Pan-ethnic	1 in 158	1 in 15700	
Muscular dystrophy-dystroglycanopathy (FKTN-related)		Ashkenazi Jewish	1 in 80	1 in 7900	
(AR)	FKTN	Japanese	1 in 188	1 in 18700	
MXO7A related conditions (AB)		Pan-ethnic	≤1 in 500	Reduced	
NM_000260.3	MYO7A	Pan-ethnic	1 in 200	1 in 3980	
Myopathy, lactic acidosis, and sideroblastic anemia 1 (AR) NM_025215.5	PUS1	Pan-ethnic	≤1 in 500	Reduced	
N-acetylglutamate synthase deficiency (AR) NM_153006.2	NAGS	Pan-ethnic	≤1 in 500	Reduced	
Nemaline myopathy 2 (AR)	NEB *	Ashkenazi Jewish	1 in 108	1 in 10700	
NM_001271208.1		Pan-ethnic	1 in 158	1 in 3140	

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT	
Nephrogenic diabetes insipidus (AQP2-related) (AR) NM_000486.5	AQP2	Pan-ethnic	1 in 1118	Reduced	
Neuronal ceroid lipofuscinosis type 1 (AR)	DDT1	Finnish	1 in 70	1 in 3450	
NM_000310.3	PPII	Pan-ethnic	1 in 199	1 in 9900	
Neuronal ceroid lipofuscinosis type 2 (AR)	TDD1	Newfoundland	1 in 53	1 in 1734	
NM_000391.3	IPPI	Pan-ethnic	1 in 250	1 in 8300	
Neuronal ceroid lipofuscinosis type 5 (AR)	CLNIS	Finnish	1 in 115	1 in 11400	
NM_006493.2	CENJ	Pan-ethnic	≤1 in 500	Reduced	
Neuronal ceroid lipofuscinosis type 6 (AR) NM_017882.2	CLN6	Pan-ethnic	≤1 in 500	Reduced	
Neuronal ceroid lipofuscinosis type 8 (AR)	CLN8	Finnish	1 in 135	1 in 13400	
NM_018941.3		Pan-ethnic	≤1 in 500	Reduced	
Niemann-Pick disease type C (NPC1-related) (AR) NM_000271.4	NPC1	Pan-ethnic	1 in 183	1 in 18200	
Niemann-Pick disease type C (NPC2-related) (AR) NM_006432.3	NPC2	Pan-ethnic	1 in 871	Reduced	
Niemann-Pick disease types A and B (AR)	SMPD1	Ashkenazi Jewish	1 in 90	1 in 1780	
NM_000543.4	0	Pan-ethnic	1 in 250	1 in 4980	
Nijmegen breakage syndrome (AR)	NBN *	Eastern European	1 in 155	1 in 15400	
NM_002485.4		Pan-ethnic	≤1 in 500	Reduced	
Nonsyndromic deafness (LOXHD1-related) (AR)	LOXHD1	Ashkenazi Jewish	1 in 180	1 in 17900	
NM_144612.6	-	Pan-ethnic	≤1 in 500	Reduced	
NR2E3-related conditions (AR) NM_014249.3	NR2E3	Pan-ethnic	≤1 in 500	Reduced	
OPA3-related conditions (AR)	OPA3	Pan-ethnic	≤1 in 500	Reduced	
NM_025136.3	01710	Sephardic Jewish (Iraqi)	1 in 10	1 in 900	
Osteopetrosis (TCIPC1-related) (AP)	TCIRG1	Ashkenazi Jewish	1 in 350	1 in 34900	
NM_006019.3		Chuvash	1 in 30	1 in 2900	
		Pan-ethnic	1 in 317	1 in 31600	
PCDH15-related conditions (AR)	PCDH15	Ashkenazi Jewish	1 in 78	1 in 7700	
NM_033056.3		Pan-ethnic	1 in 400	1 in 39900	
PEX7-related conditions (AR) NM_000288.3	PEX7	Pan-ethnic	1 in 157	1 in 15600	
		African-American	1 in 111	1 in 11000	
		Ashkenazi Jewish	1 in 225	1 in 22400	
		East Asian	1 in 50	1 in 1225	
Phenylalanine hydroxylase deficiency (AR)	PAH	Finnish	1 in 225	1 in 22400	
NM_000277.1		Irish	1 in 33	1 in 3200	
		Japanese	1 in 200	1 in 19900	
		Pan-ethnic	1 in 58	1 in 5700	
		lurkish	1 in 26	1 in 2500	
Phosphoglycerate dehydrogenase deficiency (AR)	PHGDH	Ashkenazi Jewish	1 in 400	1 in 39900	
Polycystic kidney disease (PKHD1-related) (AR)	וחחאם	Pan-ethnic	≤l in 500	Reduced	
NM_138694.3 Polymicrogyria (ADGRG1-related) (AR)			1		
NM_005682.6	ADGRGT	Pan-ethnic	≤l in 500	Reduced	
POMGN11-related conditions (AR)	POMGNT1	Finnish Don ethnic	-1 in 111	Poducod	
1101//JJ.J		Pan-ethnic	≤1 in 500	Reduced	
Pontocerebellar hypoplasia type 2D (AR)	SEPSECS	Sephardic Jewish (Moroccan and	UUC I'I I≥	Reduced	
NM_016955.3		Iraqi)	1 in 43	1 in 4200	
Pontocerebellar hypoplasia type 6 (AR) NM_020320.3	RARS2	Pan-ethnic	≤1 in 500	Reduced	
Primary carnitine deficiency (AR)		Faroese	1 in 9	1 in 800	
NM_003060.3	SLC22A5	Japanese	1 in 100	1 in 9900	
		Pan-ethnic	1 in 71	1 in 7000	

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT	
Primary ciliary dyskinesia (DNAH5-related) (AR) NM_001369.2	DNAH5	Pan-ethnic	1 in 109	1 in 10800	
Primary ciliary dyskinesia (DNAI1-related) (AR) NM_012144.3	DNAI1	Pan-ethnic	1 in 250	1 in 24900	
Primary ciliary dyskinesia (DNAI2-related) (AR) NM_023036.4	DNAI2	Ashkenazi Jewish Pan-ethnic	1 in 200 1 in 354	1 in 19900 1 in 35300	
Primary hyperoxaluria type 1 (AR) NM_000030.2	AGXT	Pan-ethnic	1 in 135	1 in 13400	
Primary hyperoxaluria type 2 (AR) NM_012203.1	GRHPR	Pan-ethnic	≤1 in 500	Reduced	
Primary hyperoxaluria type 3 (AR) NM_138413.3	HOGA1	Pan-ethnic	1 in 354	1 in 35300	
Propionic acidemia (PCCA-related) (AR) NM_000282.3	PCCA	Arab Pan-ethnic	1 in 100 1 in 224	1 in 2475 1 in 5575	
Propionic acidemia (PCCB-related) (AR) NM_000532.4	РССВ	Arab Greenlandic Inuit Pan-ethnic	1 in 100 1 in 20 1 in 224	1 in 9900 1 in 1900 1 in 22300	
PSAP-related conditions (AR) NM_002778.3	PSAP	Pan-ethnic	≤1 in 500	Reduced	
Pycnodysostosis (AR) NM_000396.3	стѕк	Pan-ethnic	1 in 438	1 in 43700	
Pyruvate carboxylase deficiency (AR) NM 000920.3	PC	Algonquian Indian Pan-ethnic	1 in 10	1 in 180	
Pyruvate dehydrogenase complex deficiency (PDHB- related) (AR) NM_000925.3	PDHB	Pan-ethnic	≤1 in 500	Reduced	
RAPSN-related conditions (AR) NM_005055.4	RAPSN	Pan-ethnic	1 in 283	1 in 28200	
RDH12-related conditions (AR) NM_152443.2	RDH12	Pan-ethnic	1 in 460	1 in 45900	
Retinitis pigmentosa 25 (AR) NM_001142800.1	EYS	Pan-ethnic Sephardic Iewish	1 in 129 1 in 42	1 in 12800 1 in 4100	
Retinitis pigmentosa 28 (AR)	FAM161A	Ashkenazi Jewish	1 in 214	1 in 21300	
NM_001201543.1		Pan-ethnic Sonhardic Jowish	1 in 289	1 in 28800	
Rhizomelic chondrodysplasia punctata type 3 (AR) NM 003659.3	AGPS	Pan-ethnic	≤1 in 500	Reduced	
Roberts syndrome (AR) NM_001017420.2	ESCO2	Pan-ethnic	≤1 in 500	Reduced	
RPE65-related conditions (AR)	RPF65	Pan-ethnic	1 in 228	1 in 22700	
NM_000329.2		Sephardic Jewish	1 in 90	1 in 8900	
Sandhoff disease (AR)	HEXB	Metis (Saskatchewan)	1 in 15	1 in 1400	
Schimke immuno-osseous dysplasia (AR)	SMARCAL1	Pan-ethnic	≤1 in 500	Reduced	
Severe combined immunodeficiency due to DCLRE1C		Navaio and Apache	1 in 10	1 in 900	
(Artemis) deficiency (AR) NM_001033855.2	DCLRE1C	Pan-ethnic	≤1 in 500	Reduced	
Severe combined immunodeficiency due to RAG2 deficiency (AR) NM_000536.3	RAG2	Pan-ethnic	≤1 in 500	Reduced	
Severe congenital neutropenia due to HAX1 deficiency (AR) NM_006118.3	HAX1	Pan-ethnic	≤1 in 500	Reduced	
Severe congenital neutropenia due to VPS45 deficiency (AR) NM_007259.4	VPS45	Pan-ethnic	≤1 in 500	Reduced	
Sialic acid storage diseases (AR)	SLC17A5	Finnish	1 in 100	1 in 9900	
INIVI_U12434.4		Pan-ethnic	≤1 in 500	Reduced	
Sjogren-Larsson syndrome (AR) NM_000382.2	ALDH3A2	Swedish	1 in 250	1 in 24900	

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
SLC12A6-related conditions (AR)	SLC12A6	French Canadian (Saguenay-Lac-St- Jean)	1 in 23	1 in 2200
NW_133047.1		Pan-ethnic	≤1 in 500	Reduced
SLC26A2-related conditions (AR)	51 (2642	Finnish	1 in 75	1 in 1480
NM_000112.3	SLCZUAZ	Pan-ethnic	1 in 158	1 in 3140
SLC37A4-related conditions (AR) NM_001164277.1	SLC37A4	Pan-ethnic	1 in 354	1 in 7060
		African-American	1 in 339	1 in 33800
		Ashkenazi Jewish	1 in 41	1 in 4000
Carithe Level: On the sum day way (AD)		Hispanic	1 in 135	1 in 13400
NM 001360.2	DHCR7	Northern European	1 in 50	1 in 4900
		Pan-ethnic	1 in 71	1 in 7000
		Sephardic Jewish	1 in 68	1 in 6700
		Southern European	1 in 83	1 in 8200
Spastic paraplegia type 15 (AR) NM_015346.3	ZFYVE26	Pan-ethnic	≤1 in 500	Reduced
Spastic paraplegia type 49 (AR)	TECPR2	Pan-ethnic	≤1 in 500	Reduced
NM_014844.3	TECHNZ	Sephardic Jewish - Bukharian	1 in 38	1 in 3700
Spinal muscular atrophy (AR)		African-American	1 in 59	1 in 342
NM_000344.3		Ashkenazi Jewish	1 in 62	1 in 1017
SMINT: 2 copies c *3+80T>G not detected	SMN1 *	Asian	1 in 50	1 in 701
Carrier residual risks listed are for 2 copy SMN1 results.	cti	Caucasian	1 in 45	1 in 880
Carrier residual risk for >2 copies are 5- to 10-fold		Hispanic	1 in 48	1 in 784
lower.		Pan-ethnic	1 in 49	1 in 800
Spondylocostal dysostosis (MESP2-related) (AR)	MESP2	Pan-ethnic	1 in 224	1 in 22300
NM_001039958.1		Puerto Rican	1 in 55	1 in 5400
Steel syndrome (AR)	COL27A1 *	Pan-ethnic	≤l in 500	Reduced
Stüve-Wiedemann syndrome (AR)	LIFR	Puerto Rican Pan-ethnic	≤1 in 500	Reduced
NM_002310.3		Ashkanazi Jawish	1 in 27	1 in 2600
		Asian	1 in 126	1 In 2000
		Caucasian	1 in 120	1 in 18100
Tay-Sachs disease (AR)	HEXA	French Canadian	1 in 27	1 in 2600
NM_000520.4	TIEXA	Irish	1 in 41	1 in 2000
		Pan-ethnic	1 in 250	1 in 24900
		Sephardic lewish	1 in 125	1 in 12400
Transient infantile liver failure (AR)		Pan-ethnic	≤1 in 500	Reduced
NM_018006.4	TRMU	Sephardic Jewish (Yemenite)	1 in 34	1 in 3300
Tyrosine hydroxylase deficiency (AR)		Caucasian	1 in 224	1 in 22300
NM_199292.2	IH	Pan-ethnic	≤1 in 500	Reduced
		Ashkenazi Jewish	1 in 143	1 in 2840
		French Canadian	1 in 66	1 in 1300
NM_000137.2	FAH *	French Canadian (Saguenay-Lac-St- Jean)	1 in 16	1 in 300
		Pan-ethnic	1 in 125	1 in 2480
Tyrosinemia type II (AR) NM_000353.2	TAT	Pan-ethnic	1 in 250	1 in 24900
	USH1C *	French Canadian/Acadian	1 in 227	1 in 22600
USH1C-related conditions (AR)		Pan-ethnic	1 in 353	1 in 3521
NIN_003707.3		Sephardic Jewish	1 in 125	1 in 1241
		Caucasian	1 in 70	1 in 6900
USH2A-related conditions (AR) NM 206933 2	USH2A	Pan-ethnic	1 in 112	1 in 11100
····· <u></u>		Sephardic Jewish	1 in 36	1 in 3500
Very long-chain acyl-CoA dehydrogenase deficiency (AR) NM_000018.3	ACADVL	Pan-ethnic	1 in 100	1 in 9900

Invitae #: RQ3343863

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY BEFORE SCREENING	CARRIER RESIDUAL RISK AFTER NEGATIVE RESULT
VRK1-related conditions (AR)		Ashkenazi Jewish	1 in 225	1 in 22400
NM_003384.2	VKKI	Pan-ethnic	≤1 in 500	Reduced
VSX2-related conditions (AR)	VSX2	Pan-ethnic	≤1 in 500	Reduced
NM_182894.2		Sephardic Jewish	1 in 145	1 in 14400
		Ashkenazi Jewish	1 in 67	1 in 3300
		Canary Islander	1 in 25	1 in 1200
Wilson disease (AR) NM 000053 3	ATP7B	Pan-ethnic	1 in 90	1 in 4450
<u> </u>		Sardinian	1 in 50	1 in 2450
		Sephardic Jewish	1 in 65	1 in 3200
WNT10A-related conditions (AR) NM_025216.2	WNT10A	Pan-ethnic	1 in 305	1 in 30400
Xeroderma pigmentosum complementation group A	ХРА	Japanese	1 in 100	1 in 9900
(AR) NM_000380.3		Pan-ethnic	1 in 1667	Reduced
Xeroderma pigmentosum complementation group C	XPC	Pan-ethnic	1 in 763	Reduced
(AR) NM_004628.4		Tunisian	1 in 50	1 in 4900
Zellweger spectrum disorder (PEX1-related) (AR) NM_000466.2	PEX1	Pan-ethnic	1 in 144	1 in 14300
Zellweger spectrum disorder (PEX2-related) (AR)	DEVO	Ashkenazi Jewish	1 in 227	1 in 22600
NM_000318.2	PEAZ	Pan-ethnic	≤1 in 500	Reduced
		French Canadian	1 in 55	1 in 5400
Zellweger spectrum disorder (PEX6-related) (AR)	PEX6	Pan-ethnic	1 in 294	1 in 29300
<u> </u>		Sephardic Jewish	1 in 18	1 in 1700
Zellweger spectrum disorder (PEX10-related) (AR) NM_153818.1	PEX10	Pan-ethnic	1 in 606	Reduced
Zellweger spectrum disorder (PEX12-related) (AR) NM_000286.2	PEX12	Pan-ethnic	1 in 409	1 in 40800

Methods

Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated below. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 10bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329.). Pathogenic and Likely Pathogenic variants that do not meet the validated quality thresholds are confirmed. Confirmation technologies may include any of the following: Sanger sequencing, Pacific Biosciences SMRT sequencing, MLPA, MLPA-seq, Array CGH.Array CGH confirmation of NGS CNV calling performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778). The following analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha$ 3.7

subtypes, and all -α3.7 variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, triplet repeats are detected by PCR with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences. Technical component of confirmatory sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).

The following transcripts were used in this analysis. If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report: ABCB11 (NM_003742.2), ABCC8 (NM_000352.4), ACAD9 (NM_014049.4), ACADM (NM_000016.5), ACADVL (NM_000018.3), ACAT1 (NM_000019.3), ACOX1 (NM_004035.6), ACSF3 (NM_174917.4), ADA (NM_000022.2), ADAMTS2 (NM_014244.4), ADGRG1 (NM_005682.6), AGA (NM_000027.3), AGL (NM_000642.2), AGPS (NM_003659.3), AGXT (NM_000030.2), AIRE (NM_000383.3), ALDH3A2 (NM_000382.2), ALDOB (NM_000035.3), ALG6 (NM_013339.3), ALMS1 (NM_015120.4), ALPL (NM_000478.5), AMT (NM_000481.3), AQP2 (NM_000486.5), ARG1 (NM_000045.3), ARSA (NM_000487.5), ARSB (NM_000046.3), ASL (NM_000048.3), ASNS (NM_133436.3), ASPA (NM_000049.2), ASS1 (NM_000050.4), ATM (NM_000051.3), ATP6V1B1 (NM_001692.3), ATP7B (NM_000053.3), BBS1 (NM_024649.4), BBS10 (NM_024685.3), BBS12 (NM_152618.2), BBS2 (NM_031885.3), BCKDHA (NM_000709.3), BCKDHB (NM_183050.2), BCS1L (NM_004328.4), BLM (NM_000057.3), BSND (NM_057176.2), CAPN3 (NM_000070.2), CBS (NM_000071.2), CDH23 (NM_022124.5), CEP290 (NM_025114.3), CERKL (NM_001030311.2), CFTR (NM_000492.3), CHRNE (NM_000080.3), CIITA (NM_000246.3), CLN3 (NM_001042432.1), CLN5 (NM_006493.2), CLN6 (NM_017882.2), CLN8 (NM_018941.3), CLRN1 (NM_174878.2), CNGB3 (NM_019098.4), COL27A1 (NM_032888.3), COL4A3 (NM_000091.4), COL4A4 (NM_000092.4), COL7A1 (NM_000094.3), CPS1 (NM_001875.4), CPT1A (NM_001876.3), CPT2 (NM_000098.2), CRB1 (NM_201253.2), CTNS (NM_004937.2), CTSK (NM_000396.3), CYBA (NM_000101.3), CYP11B1 (NM_000497.3), CYP11B2 (NM_000498.3), CYP17A1 (NM_000102.3), CYP19A1 (NM_031226.2), CYP21A2 (NM_000500.7), CYP27A1 (NM_000784.3), DBT (NM_001918.3), DCLRE1C (NM_001033855.2), DHCR7 (NM_001360.2), DHDDS (NM_024887.3), DLD (NM_000108.4), DNAH5 (NM_001369.2), DNAI1 (NM_012144.3), DNAI2 (NM_023036.4), DYSF (NM_003494.3), EIF2B5 (NM_003907.2), ELP1 (NM_003640.3), ERCC6 (NM_000124.3), ERCC8 (NM_000082.3), ESCO2 (NM_001017420.2), ETFA (NM_000126.3), ETFDH (NM_004453.3), ETHE1 (NM_014297.3), EVC (NM_153717.2), EVC2 (NM_147127.4), EYS (NM_001142800.1), FAH (NM_000137.2), FAM161A (NM_001201543.1), FANCA (NM_000135.2), FANCC (NM_000136.2), FANCG (NM_004629.1), FH (NM_000143.3), FKRP (NM_024301.4), FKTN (NM_001079802.1), G6PC (NM_000151.3), GAA (NM_000152.3), GALC (NM_000153.3), GALK1 (NM_000154.1), GALT (NM_000155.3), GAMT (NM_000156.5), GBA (NM_001005741.2), GBE1 (NM_000158.3), GCDH (NM_000159.3), GFM1 (NM_024996.5), GJB2 (NM_004004.5), GLB1 (NM_000404.2), GLDC (NM_000170.2), GLE1 (NM_001003722.1), GNE (NM_001128227.2), GNPTAB (NM_024312.4), GNPTG (NM_032520.4), GNS (NM_002076.3), GRHPR (NM_012203.1), HADHA (NM_000182.4), HAX1 (NM_006118.3), HBA1 (NM_000558.4), HBA2 (NM_000517.4), HBB (NM_000518.4), HEXA (NM_000520.4), HEXB (NM_000521.3), HGSNAT (NM_152419.2), HJV (NM_213653.3), HLCS (NM_000411.6), HMGCL (NM_000191.2), HOGA1 (NM_138413.3), HPS1 (NM_000195.4), HPS3 (NM_032383.4), HSD17B4 (NM_000414.3), HSD3B2 (NM_000198.3), HYAL1 (NM_153281.1), HYLS1 (NM_145014.2), IDUA (NM_000203.4), IVD (NM_002225.3), KCNJ11 (NM_000525.3), LAMA2 (NM_000426.3), LAMA3 (NM_000227.4), LAMB3 (NM_000228.2), LAMC2 (NM_005562.2), LCA5 (NM_181714.3), LDLR (NM_000527.4), LDLRAP1 (NM_015627.2), LHX3 (NM_014564.4), LIFR (NM_002310.5), LIPA (NM_000235.3), LOXHD1 (NM_144612.6), LPL (NM_000237.2), LRPPRC (NM_133259.3), MAN2B1 (NM_000528.3), MCOLN1 (NM_020533.2), MED17 (NM_004268.4), MESP2 (NM_001039958.1), MFSD8 (NM_152778.2), MKS1 (NM_017777.3), MLC1 (NM_015166.3), MMAA (NM_172250.2), MMAB (NM_052845.3), MMACHC (NM_015506.2), MMADHC (NM_015702.2), MPI (NM_002435.2), MPL (NM_005373.2), MPV17 (NM_002437.4), MTHFR (NM_005957.4), MTRR (NM_002454.2), MTTP (NM_000253.3), MUT (NM_000255.3), MYO7A (NM_000260.3), NAGLU (NM_000263.3), NAGS (NM_153006.2), NBN (NM_002485.4), NDRG1 (NM_006096.3), NDUFAF5 (NM_024120.4), NDUFS6 (NM_004553.4), NEB (NM_001271208.1), NPC1 (NM_000271.4), NPC2 (NM_006432.3), NPHS1 (NM_004646.3), NPHS2 (NM_014625.3), NR2E3 (NM_014249.3), NTRK1 (NM_001012331.1), OAT (NM_000274.3), OPA3 (NM_025136.3), PAH (NM_000277.1), PC (NM_000920.3), PCCA (NM_000282.3), PCCB (NM_000532.4), PCDH15 (NM_033056.3), PDHB (NM_000925.3), PEX1 (NM_000466.2), PEX10 (NM_153818.1), PEX12 (NM_000286.2), PEX2 (NM_000318.2), PEX6 (NM_000287.3), PEX7 (NM_000288.3), PFKM (NM_000289.5), PHGDH (NM_006623.3), PKHD1 (NM_138694.3), PMM2 (NM_000303.2), POMGNT1 (NM_017739.3), PPT1 (NM_000310.3), PROP1 (NM_006261.4), PSAP (NM_002778.3), PTS (NM_000317.2), PUS1 (NM_025215.5), PYGM (NM_005609.3), RAB23 (NM_183227.2), RAG2 (NM_000536.3), RAPSN (NM_005055.4), RARS2 (NM_020320.3), RDH12 (NM_152443.2), RMRP (NR_003051.3), RPE65 (NM_000329.2), RPGRIP1L (NM_015272.2), RTEL1 (NM_001283009.1), SACS (NM_014363.5), SAMHD1 (NM_015474.3), SEPSECS (NM_016955.3), SGCA (NM_000023.2), SGCB (NM_000232.4), SGCG (NM_000231.2), SGSH (NM_000199.3), SLC12A3 (NM_000339.2), SLC12A6 (NM_133647.1), SLC17A5 (NM_012434.4), SLC22A5 (NM_003060.3), SLC25A13 (NM_014251.2), SLC25A15 (NM_014252.3), SLC26A2 (NM_000112.3), SLC26A4 (NM_000441.1), SLC35A3 (NM_012243.2), SLC37A4 (NM_001164277.1), SLC39A4 (NM_130849.3), SLC4A11 (NM_032034.3), SLC7A7 (NM_001126106.2), SMARCAL1 (NM_014140.3), SMN1 (NM_000344.3), SMPD1 (NM_000543.4), STAR (NM_000349.2), SUMF1 (NM_182760.3), TAT (NM_000353.2), TCIRG1 (NM_006019.3), TECPR2 (NM_014844.3), TFR2 (NM_003227.3), TGM1 (NM_000359.2), TH (NM_199292.2), TMEM216 (NM_001173990.2),

TPP1 (NM_000391.3), TRMU (NM_018006.4), TSFM (NM_001172696.1), TTPA (NM_000370.3), TYMP (NM_001953.4), USH1C (NM_005709.3), USH2A (NM_206933.2), VPS13A (NM_033305.2), VPS13B (NM_017890.4), VPS45 (NM_007259.4), VRK1 (NM_003384.2), VSX2 (NM_182894.2), WNT10A (NM_025216.2), XPA (NM_000380.3), XPC (NM_004628.4), ZFYVE26 (NM_015346.3).

- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org) and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

Limitations

- Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination.</p>
- GBA: c.84dupG (p.Leu29Alafs*18), c.115+1G>A (Splice donor), c.222_224delTAC (p.Thr75del), c.475C>T (p.Arg159Trp), c.595_596delCT (p.Leu199Aspfs*62), c.680A>G (p.Asn227Ser), c.721G>A (p.Gly241Arg), c.754T>A (p.Phe252lle), c.1226A>G (p.Asn409Ser), c.1246G>A (p.Gly416Ser), c.1263_1317del (p.Leu422Profs*4), c.1297G>T (p.Val433Leu), c.1342G>C (p.Asp448His), c.1343A>T (p.Asp448Val), c.1448T>C (p.Leu483Pro), c.1504C>T (p.Arg502Cys), c.1505G>A (p.Arg502His), c.1603C>T (p.Arg535Cys), c.1604G>A (p.Arg535His) variants only. Rarely, sensitivity to detect these variants may be reduced. When sensitivity is reduced, zygosity may be reported as "unknown". RPGRIP1L: Sequencing analysis is not offered for exon 23. CYP21A2: Analysis includes the most common variants (c.92C>T(p.Pro31Leu), c.293-13C>G (intronic), c.332_339delGAGACTAC (p.Gly111Valfs*21), c.518T>A (p.Ile173Asn), c.710T>A (p.Ile237Asn), c.713T>A (p.Val238Glu), c.719T>A (p.Met240Lys), c.844G>T (p.Val282Leu), c.923dupT (p.Leu308Phefs*6), c.955C>T (p.Gln319*), c.1069C>T (p.Arg357Trp), c.1360C>T (p.Pro454Ser) and the 30Kb deletion) as well as select rare HGMD variants only (list available upon request). Full gene duplications are reported only in the presence of a pathogenic variant(s). When a duplication and a pathogenic variant(s) is identified, phase (cis/trans) cannot be determined. Full gene deletion analysis is not offered. Sensitivity to detect these variants, if they result from complex gene conversion/fusion events, may be reduced. NBN: Deletion/duplication analysis is not offered for exons 15-16. USH1C: Deletion/duplication analysis is not offered for exons 5-6. HBA1/2: This assay is designed to detect deletions and duplications of HBA1 and/or HBA2, resulting from the -alpha20.5, --MED, --SEA, --FIL/--THAI, -alpha3.7,

-alpha4.2, anti3.7 and anti4.2. Sensitivity to detect other copy number variants may be reduced. Detection of overlapping deletion and duplication events will be limited to combinations of events with significantly differing boundaries. In addition, deletion of the enhancer element HS-40 and the sequence variant, Constant Spring (NM_000517.4:c.427T>C), can be identified by this assay. HBA2: Sequencing analysis is not offered for exons 1-2. NEB: Deletion/duplication analysis is not offered for exons 82-105. NEB variants in this region with no evidence towards pathogenicity are not included in this report, but are available upon request. TSFM: Sequencing analysis is not offered for exon 5. FAH: Deletion/duplication analysis is not offered for exons 2-3, 27-28. MMADHC: Deletion/duplication analysis is not offered for exons 5-6. OAT: Deletion/duplication analysis is not offered for exons 2-3, 27-28. MMADHC: Deletion/duplication analysis is not offered for exons 11-12. COL27A1: Deletion/duplication analysis is not offered for exons 46-47. MTHFR: The NM_005957.4:c.665C>T (p.Ala222Val) (aka 677C>T) and c.1286A>C (p.Glu429Ala) (aka 1298A>C) variants are not reported in our primary report. SMN1 or SMN2: NM_00344.3:c.*3+80T>G variant only. SMN1: Systematic exon numbering is used for all genes, including SMN1, and for this reason the exon typically referred to as exon 7 in the literature (PMID: 8838816) is referred to as exon 8 in this report. This assay unambiguously detects SMN1 exon 8 copy number. The presence of the g.27134T>G variant (also known as c.*3+80T>G) is reported if SMN1 copy number = 2.

This report has been reviewed and approved by:

Am behlm an2

Andrea Behlmann, PhD, FACMG Clinical Cytogeneticist & Clinical Molecular Geneticist

Patient Information

Name: 5819 Donor Date of Birth: 03/1994 Sema4 ID: 20183775UD Client ID: TSBCA-S4DONOR5819 Indication:Carrier Screening

Specimen Information Specimen Type:Saliva Date Collected: 11/17/2020 Date Received: 11/18/2020 Final Report: 04/22/2022

Car 581 Dat Sen

Carrier screening report 5819 Donor Date of Birth.03/1994 Sema4 (D: 20183775UD

Referring Provider Lorraine Bonner, M.D. The Sperm Bank of California 2115 Milvia Street Suite 201 Berkeley, CA. 94704 Fax: 510-841-0332

Unmask Additional Gene(s) V1E

Number of genes tested: 2

SUMMARY OF RESULTS AND RECOMMENDATIONS

Negative

Negative for all genes tested: *EYS*, and *MEFV* To view a full list of genes and diseases tested please see Table 1 in this report

AR=Autesomal recessive: XL=X-linked

Recommendations

• Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder.

Test description

This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and **go.sema4.com/residualrisk** for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test.

(Commente and

Anastasia Larmore, Ph.D., Associate Laboratory Director Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D.

T: 800-298-6470 F: 645-859-6870 www.sema4.00m

Genes and diseases tested

For specific detection rates and residual risk by ethnicity, please visit go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

	Disease	Gene	Inheritance Pattern	Status	Detailed Summary
٢	Negative				
_	Familial Mediterranean Fever	MEFV	AR	Reduced Risk (see table below)	
	Retinitis Pigmentosa 25	EVS	AR	Reduced Risk (see table below)	

AR=Autosomal recessive; XL=X-linked

Table 2: Residual Risk by ethnicity for negative results

Disease (Inheritance)	Gene	Ethnicity	Camer Frequency	Detection Rate	Residual Risk	Analytical Detection Rate
Familial Mediterranean Fever(AR)	MEFV [‡]	African	1 in 230	74%	1 in 870	99%
NM_000243.2		Ashkenazi Jewish	1 in 8	99%	1 in 720	
		East Asian	1 in 141	96%	1 in 3,400	
		Finnish	1 in 29	99%	1 in 2,800	
		European (Non-Finnish)	1 in 40	97%	1 in 1,200	
		Native American	1 in 74	95%	1 in 1,500	
		South Asian	1 in 59	95%	1 in 1,000	
		Worldwide	1 in 40	97%	1 in 1,200	
		Sepharic Jewish	1 in 14	99%	1 in 1,300	
		Armenian	1 in 5	99%	1 in 400	
		Turkish	1 in 5	75%	1 in 17	
Retinitis Pigmentosa 25 (AR)	EY5	African	1 in 71	94%	1 in 1,100	97%
NM_001142800.1		Ashkenaa Jewish	1 in 109	97%	1 in 3,600	
		East Asian	1 in 53	81%	1 in 280	
		Finnish	1 in 39	97%	1 in 1,300	
		European (Non-Finnish)	1 in 82	92%	1 in 980	
		Native American	1 in 152	96%	1 in 3.600	
		South Asian	1 in 168	58%	1 in 400	
		Worldwide	1 in 77	91%	1 in 810	
		Sephardic Jewish - Moroccan	1 in 42	22%	i m 50	

* Carrier detection by HEXA enzyme analysis has a detection rate of approximately \$8% (Applies to HEXA gene testing only).

+ Carrier frequencies include milder and reduced penetrance forms of the disease. Therefore, carrier frequencies may appear higher than reported in the literature (Applies to *BTD, F9, GJB2, GJB1, GLA*, and *MEFV* gene testing only).

‡ Please note that *GJB2* testing includes testing for the two upstream deletions. del(GJB6-D13S1830) and del(GJB6-D13S1854) (PMID:11807148 and 15994881) (Applies to *GJB2* gene testing only).

AR: Autosomal recessive; N/A: Not available; XL: X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen. Inc. AmplideX® *FMR1* PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for *FMR1* CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the *FMR1* CGG repeat.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY® System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results may occur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity, carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be detected. With the exception of triplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. These 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A2* and *CYP21A2* and *CYP21A2* and *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent zo carrier) or individuals that carry an intragenic mutation in *SMN2*. Please also note that 2% of individuals with SMA have an *SMN1* mutation that occurred *de novo*. Typically in these cases, only one parent is an SMA carrier.

The presence of the c.^{*}380T>G (chr5:70.247,90:T>G) variant allele in an individual with Ashkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.^{*}380T>G is likely indicative of a silent (20) carrier. In individuals with two copies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence of c.^{*}380T>G significantly increases or decreases, respectively, the likelihood of being a silent 20 silent carrier.

Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testing for the c1380T>G variant allele; these will be reported if confirmed to be located in SMN1 using locus-specific Sanger primers

MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA* gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMQXT technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Samples were pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

Carrier screening report 5819 Donor Date of Birth: 03/1004 Sema 4 (D: 20183775UD

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as "Exceptions") and will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY® genotyping platform

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to. UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al. 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sangersequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Copy Number Variant Analysis (Analytical Detection Rate >95%)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA(depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected. Exon Array (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 180,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number Relative genomic copy numbers are calculated based on the standard <u>AACt</u> formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for CYP21A2 HBA1 and HBA2 and GBA. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. For CYP21A2, a certain percentage of healthy individuals carry a duplication of the CYP21A2 gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the CYP21A2 gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cisrans configuration) of the CYP21A2 alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >28,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the a priori risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature,

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate ≥ 98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-β-Nacetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if beingn variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both *HEXA* and *HEXB* pathogenic or pseudodeficiency variants are present in the same individual.

Please note these tests were developed and their performance characteristics were determined by Sema4 Opco. Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med.* 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients application of modern diagnostic techniques to a large cohort. *Hum Mutat* . 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May:17(5):405-24 Additional disease-specific references available upon request.